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Abstract. The problem of molecular docking is defined as that of finding a minimum energy
configuration of a pair of molecular structures (usually consisting of proteins, DNA or RNA
fragments). It is often assumed that the two interacting structures can be considered as rigid bodies
and that it is of interest to researchers to develop methods which enable to discover the potential
binding sites. Many different models have been proposed in the literature for the definition of the
potential energy between two molecular structures, most of which contain at least a term (known
as Van Der Waals interaction) which accounts for pairwise attraction between atoms, a repulsion
term and a term which takes into account electrostatic forces (Coulomb interaction). Some well
known models, and in particular those used in rigid docking, are based on the assumption that the
only terms which are relevant in the process of docking are pairwise interactions between atoms
belonging to the two different parts of the structure. In this paper the problem of finding the lowest
energy configuration of a pair of biomolecular structures, considered as rigid bodies, is defined
and formulated as a global optimization problem. In terms of dimension of the search space this
formulation is not ‘high-dimensional’, as there are only six degrees of freedom: 3 translation and
3 rotation parameters. However the energy surface of the docking problem is characterized by a
huge number of local minima; moreover each function evaluation is quite expensive (interesting
structures usually possess a few thousand atoms each). So there is a strong need both of local and
of global optimization procedures. In this paper a local optimization technique, based upon standard
non linear programming software and a penalized objective function, is introduced and its potential
usefulness in the context of global optimization is outlined.
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1. Introduction

Many important functions of the human organism are linked to the activity of one
or more proteins, or some other biomolecules as nucleic acids. The activity of
proteins is frequently related with their capability of linking with other molecules
and change their properties. To explain this mechanism it is useful to use as
an example the action of enzymes. Chemical reactions can occur only when
a threshold of energy is reached. Sometimes this threshold is so high that the
reaction, in normal conditions, does not take place. The enzyme acts linking
to the host molecule, modifying its geometry and its binding capability; this
way it allows an easier interaction with other molecules. During this process
the surfaces of the molecules become very close each other, as the interaction
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becomes non-negligible only at very short distances. To obtain a close match
between the molecules, a strong complementarity of the two surfaces involved
in the binding is required. Thanks to this distinctive characteristic, the process of
approaching is called ‘docking’. In this paper we will provide a tool for finding
the optimal docking configuration of two molecules by means of local and global
optimization applied to a function which expresses the potential energy of the
system. In the next section a detailed model for the definition of the potential
energy is introduced. Then, after a review of some computational approaches to
the docking problem found in the literature, the general idea of two phase methods
for energy minimization will be outlined. Then the application of global and local
optimization to a simulated experiment consisting in splitting into two parts a
molecular cluster and recovering the original conformation through an algorithm
for docking will be presented. Finally some preliminary results on the problem
of docking proteins of interest to biologists will be presented. The main purpose
of this paper is to introduce a technique for global optimization in biomolecular
docking; more refined algorithms for rigid docking and a much more extensive
computational study of protein-protein docking will appear elsewhere (Addis and
Schoen, 2003).

2. A Model for the Potential Energy of a Docking Configuration

A docking configuration of two molecules is assumed to correspond to the config-
uration in which the potential energy of the whole system is minimum. Evaluating
the actual energy of a complex molecule, and, in particular, the free energy, is in
general very expensive. Thus, in particular for molecular dynamics simulations,
an approximate mathematical model is necessary. In the literature many differ-
ent models have been proposed; most common force field expressions can be
represented as follows:
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Some force fields also include an additional term which takes into account the
solvation energy, which is caused by the interaction with a solvent (frequently
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water). In the above model, atoms are considered as balls, and chemical bonds as
springs. The first three terms in the above expression are called bonded interac-
tions, as they refer to groups of atoms linked two by two by chemical bonds. In
particular, letting L denote the set of all pairs of atoms linked by a chemical bond
and r; the distance of atoms within these pairs, term (1) represents the energy
due to the oscillation of the bond length around an equilibrium value r. Symbol
A denotes the set of all groups of three consecutive atoms linked by chemical
bonds (i.e., atom k is bonded with atom k+ 1, and atom k+1 is bonded to atom
k+2) and 6, the angle formed by these three atoms; term (2) takes into account
the energy due the oscillation of the angle around an equilibrium value 6. Term
(3), as the first ones, takes into account an oscillation around some equilibrium
values. The angle considered in this term is the dihedral (or torsion) one formed
by the two planes identified by a group of four consecutive bonded atoms (these
groups form set T).

The last two terms refer to all possible pairs of non bonded atoms (set C), and,
r; is the distance between a pair of atoms (i, j) in C. Term (4) is the Van der
Waals interaction, which is the effect of the sum of an attractive and a repulsive
force. The minimum of the pairwise interaction (4) is reached when the distance
of two atoms is equal to a constant which is defined as the sum of the two Van der
Waals radii of the atoms. A;; and B; are constants which depend on the types
of atoms i and j. Finally, the term in (5) is the electrostatic interaction, which
depends on the electric charges of atoms, respectively denoted by ¢; and g;; € is
a constant.

This scheme is common to a large number of different existing force fields
(some of the best known of which are GROMOS', CHARMM?, ECEPP?,
AMBER*) which mainly differ for different choices of the parameters.

In order to reduce the number of variables and the computational time a
common approximation is to consider the two molecules as rigid bodies, as, in
fact, it has been observed that during the docking process the deformation is
relatively small. Some recent results (Fernandez-Recio et al., 2002) show that
a rigid docking phase can be successfully used as a first phase followed by a
refined flexible docking phase. In other words, rigid docking can be used to
produce a number of potentially promising docking configurations, which are then
used as starting points for an optimization phase in which at least those atoms
which belong to the interface between the two molecules are allowed to move
in a non-rigid way. With the assumption of rigid docking, we can significantly
reduce the computational effort needed to evaluate the potential energy; this does
not mean that the overall computational complexity of the docking problem is
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reduced as, in fact, it is widely believed that the Van der Waals and electrostatic
contributions are responsible for the presence of a huge number of local minima;
some experimental studies tend to support the opinion that the explicit addition
of the other terms in problems like, e.g., protein folding or flexible docking,
simplifies the optimization process.

In rigid docking we can consider one of the two molecules as fixed and the
other in a position obtained through a roto-translation from a fixed position. We
call the fixed molecule the host and the other one the guest. For what concerns
the experiments, the guest is chosen as the smaller of the two molecules. Many
contributions to the potential energy, due to the assumption of rigid docking,
account for a constant and thus can be neglected during optimization. In particular
all bonded interactions and all non bonded interactions within the host or the
guest molecule can be neglected. It is also assumed that no chemical bond exists
between the host and the guest, like e.g., sulphure or salt bridges. The only
variable contributions are those due to the non bonded interaction between the
two molecules. Thanks to this simplification, the problem to be solved can be
formalized as follows:

v*=arg minE(v)
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Here r; is the euclidean distance between two atoms (one belonging to each
molecule), and v is the roto-translation vector. The main difficulty in the solution
of this problem is the extremely high number of local minima and the great
variation in the shape of the objective function depending on the pair of molecules
considered, so that, usually, general purpose methods are not efficient. Moreover
the very high computational effort needed to evaluate the objective function and
its gradient is to be taken into account: proteins have thousands of atoms and,
for each function evaluation, we must compute the contribution for every pair of
atoms, one in the guest and the other in the host, so the number of terms involved
in each function evaluation is of the order of millions. Simplified models have
been proposed in the literature, the most promising of which are those based upon
pre-calculated potential grids. We plan to explore the possibility of including
such approximate models in the near future.

3. A Short Review of Existing Approaches

It is quite difficult to compare different methods for solving the docking problem,
as there is no unique model for the potential and, in many cases, it is not easy
to obtain reliable data on the molecules used in the tests. Frequently papers
report only the values of the energy and not the optimal configurations, so
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results obtained with different force field cannot be compared. Other differences
in the energy can be introduced by simplification of the model, for example
considering rigid docking instead of flexible docking. In fact despite the fact that
rigid docking can be considered as a good approximation, it is difficult, without a
deep knowledge in biochemistry problems, to understand if the solution obtained
with an approximate model is indeed a good solution in practice.

In the following we briefly cite some of the approaches reported in the literature
for the docking problem; we recall however that, for what concerns methods
based upon global optimization, a good review is found in (Diller and Verlinde,
1999). Some docking methods are based upon ligand/receptor knowledge, like
e.g. (Rosenfeld et al., 1995); there it is assumed that the position of the binding
site in one molecule is a priori known and an algorithm is used to dock the
other molecule by fitting the position of the ligand to the binding site. This prior
knowledge is usually obtained by experimental observations and crystallographic
data. Other methods are based upon the geometric characteristics of the surfaces.
One example of these approaches is described in (Lenhof, 1995) where, in order
to reduce partially the computational complexity of the algorithm, atoms are
assigned to cubes in a regular lattice in three-dimensional space. While one of the
two molecules is kept fixed, the other is roto-translated, and an index is computed
which counts the number of atoms of both molecules within each cube. Cubes
can be internal, external or on the surface of a molecule. A fitness function is
defined which takes into account the number of surface cubes of one molecule
which contain atoms of the other. In this fitness function terms are subtracted
when atoms of the two molecules overlap. Given this function, an exhaustive
search of possible dockings is made and the best one is recorded.

In this paper we cannot go into details in the method used to perform this
sort of exhaustive search: it may suffice to recall that the method prescribes
to choose three atoms in both molecules and make them match as closely as
possible. The algorithm runs by considering all possible matchings of triples
chosen from a set of promising surface points. Most of the approaches which rely
on global optimization algorithms are ab-initio methods: in this case no structure
is generally imposed on the docking configuration, nor any prior information on
the docking sites is imposed. Instead, based upon ‘first principles’ models for the
potential and some structural knowledge, global optimization algorithms are used
to drive the two molecules toward a close contact. Many authors use variations of
genetic algorithms in this context, like (Wang et al., 1999), (Morris et al., 1998).
In other approaches, deterministic global optimization methods, like the «BB
method described in (Klepeis et al., 1998) (Floudas et al., 1999), (Androulakis et
al., 1997) and (Maranas et al., 1995) are used. This method is an implementation
of a classical Branch and Bound scheme for global optimization; in order to be
able to prune the Branch and Bound tree, a lower bounding technique is employed
based on the convexification of the objective function. Other authors, see e.g.
(Shao et al., 1997) and (More and Wu, 1997), use different smoothing techniques
in the context of Lennard-Jones cluster optimization.
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Although the idea of smoothing has some connection with the two-phase
approach we are introducing in this paper, it should be observed that classical
smoothing approaches transform the objective function into another one, hopefully
easier to globally optimize, and then try to track the global optimum of the
smoothed function to the original one. Although the idea is interesting, published
results are much worse than those obtained, on the same problems, by two-
phase optimization. Smoothing techniques are based on the idea of gradually
moving from a smoothed, hopefully convex, function to the original one; two
phase methods, which will be introduced later, do not attempt a smoothing or a
convexification, but simply transform the problem in such a way that sampling in
the region of attraction of the global optimum is easier. In Totrov and Abagyan
(1997), a stochastic method is proposed in which random moves of a flexible
ligand are performed, followed by local optimization. The model used is one
in which the (small) ligand has several degrees of flexibility, while the host
(or receptor) molecule possess a limited flexibility in the neighborhood of the
docking site. Also in (Apostolakis et al., 1998) the problem of flexibly docking
a small ligand is considered. Here however while, as in the previous paper, local
optimizations are performed, the energy function is gradually changed during the
docking process, in order to simulate the effective interactions which occur in
nature.

It can be observed that, in order to find new docking configurations, ab-initio
methods might be preferable, as they do not require much prior information.
Unfortunately genetic algorithms often have the disadvantage of being quite
constrained by the characteristics of the initial population which, if not chosen
carefully, might prevent the global optimum to be reached. On the other hand,
exact methods like ®BB, might have a computational cost which is prohibitively
high for protein-protein complexes composed of tens or hundreds of amino acids,
unless simplifying assumptions are made which can easily lead to the discovery
of only local optima. A quite unexplored field is that of problem reformulation,
an example of which can be found in (Huang et al., 2002); however it is still not
clear if and how such an approach could be applied to protein docking.

In closing this short review we would also like to recall that in King et al.,
(1996) a potential function obtained by experimental data is described, in which
interactions depending on solvability and entropy changes are considered. The
resultant additive term does not substantially increase the computational effort in
function evaluation. In the paper some examples obtained by minimizing with
the same algorithm the new potential function and a classic potential (specifically
CHARMM see (MacKerell et al., 1998)) are described. Using this new model,
structures are obtained whose mean square distances from the experimental data
are reduced respect to those obtained with classic potential energy. So it can be
affirmed that the research in global optimization algorithms for molecular docking
problem is moving along at least two important and complementary directions:
first that of building new and reliable algorithms which are capable, given a
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potential energy function, to find the best docking configurations; second, new
and more precise models for the potential energy have to be developed, which
take into account experimental data, but do not add too much to the already
extremely high computational cost of function and gradient evaluations.

4. An Introduction to Two-phase Methods for Global Optimization

One of the simplest methods of global optimization is Multistart, which con-
sists of locally minimizing the objective function from different starting points
obtained by random generation. In order to try to improve on Multistart, sev-
eral approaches have been designed in order either to reduce the number of
unnecessary local searches by means of clustering techniques, or to modify the
probability distribution of the starting points. In particular a recent approach for
the minimization of the potential energy of Lennard-Jones clusters of identical
atoms with no charge has been recently described in (Locatelli and Schoen, 2002)
and (Locatelli and Schoen, 2003). There, exploiting the special structure of the
problem at hand, a two phase local optimization was introduced in which the
first phase, starting from a random initial configuration, is aimed at finding a
good starting point for the potential energy minimization (the second phase). The
objective function in the first phase is not the original one, but a modified func-
tion M in which penalty terms are added in order to augment the probability of
obtaining a good starting configuration. Here we try to follow the same idea of
looking for starting points better than those obtained through random sampling.
In doing so, it is important to choose properties which are general enough, other-
wise we could obtain a method which is only applicable to a very specific class
of molecules. We build a function which penalizes conformations without certain
specific properties; although we could have used constraints in order to reduce
the feasible space, we considered that this choice could produce two negative
effects: first the local optimization problem becomes a constrained one, harder to
solve; second, in this way a rigid cut-off of solutions is performed, at the risk of
excluding the optimal one.

Our idea is to construct a general method using only a priori information valid
for a large part of biomolecular docking: one of these, for example, is the strong
geometric complementarity.

The general scheme of a two phase local optimization, started from a random
initial configuration X, is outlined as follows:

Procedure: TwoPhaseLocOpt(X);
Phase I: find

Y=[Y,,...,Ys]=arg local minM (v)

veRO

using X =[X,,..., X;] € R® as the starting point;
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Phase II: find

Z=[Z,,...,Z¢]|=arg local m]ggE(v) (7)
ve

using Y as a starting point;
end: return(Z).

In order to implement a two phase method, a definition of a suitable modified
potential function has to be given. In the next sections some possible approaches
will be suggested for docking problems. It should in any case be stressed that
the two-phase approach is a local one; a two-phase optimization can be used as
a substitute for regular local optimization in any global minimization method,
like Multistart or Simulated Annealing or other methods, even deterministic ones,
which rely on local searches.

5. Two Phase Methods for Docking Lennard-Jones Clusters

As the problem of docking realistic biomolecules is extremely hard to solve, we
chose to test our algorithms on a simplified problem and then we used some
of the results on the original problem. The simplified model chosen is based on
Lennard-Jones clusters. A cluster is formed by n identical atoms with no electric
charge. The interaction considered is the Lennard-Jones potential, which depends
only on the distance of pairs of atoms r;; and has the following form:

n i—1 1 2

E=) > 5% (8)

i=1j=1"ij T
The Lennard-Jones cluster problem consists of finding the optimal configuration
which minimizes this energy. In this problem the variables are the 3n coordinates
of the centers of the n atoms in three-dimensional euclidean space.

This model was chosen for two reasons: Lennard-Jones clusters have been the
subject of intense study and research, so putative global optima are available;
moreover, the Lennard-Jones potential can be considered as a simplified form
of the Van der Waals interaction, one of the main contributions to the potential
energy of biomolecules.

In order to perform experiments on docking we started from a putative optimal
cluster and split it to obtain two parts; one of the two parts was randomly displaced
in R?. Then we tried to find the optimal docking configuration, which corresponds
to the known original cluster, minimizing the interaction between pairs of atoms
belonging to the two different sub-clusters. As in the biomolecular problem, we
called the fixed part the host and the other one the guest; v is the roto-translation
vector. The following optimization problem was thus solved:

v*=arg minE(v)
veR6
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During the first phase of the algorithm we would like to obtain configurations
where the contact surface is large, and, in order to do so, we tried to put the two
parts as close as possible. To obtain this effect we chose to insert a penalty term of
the form /7 in the modified potential in order to strongly take into account the
surface interaction; this way the local optimization algorithm is driven towards
configurations in which many pairs of atoms are close to each other. We also
need a barrier term to avoid the overlapping of atoms; the resulting modified
function chosen for this problem is represented in (10).

Muv)= Y > %—Fa,k/rij(v) (10)

ieguest jehost rij

and some plots for different values of the parameters are reported in Figure 1.

In the above expression the repulsive term and the attractive one contain
parameters which have to be chosen; in particular, choosing a value of g smaller
than 12 has the effect of generating a barrier which is softer than that of the original
Lennard-Jones potential; « is a weight which is used to tune the contribution of
the attractive term and k is used in order to test different shapes of the attractive
term. Although this penalized function has no direct physical interpretation, an
analysis of the effects of a similar penalization term in a bio-chemical context
has been performed in (Doye, 2000).
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Figure 1. Modified function M (v) with different parameters.
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Several numerical experiments have been performed, with different choices of
the parameters. We generated random initial configurations by randomly applying
a rotation to the guest molecule and then displacing the guest molecule at a
prefixed distance r from the host in a random direction; from each of these
starting configurations, we performed local minimization both with the two phase
algorithm and with a standard local method, in order to check whether the addition
of a first phase is indeed useful; for this purpose, in the two phase algorithm we
used the same local method as used in the single phase method, a limited memory
BFGS algorithm (Liu and Nocedal, 1989). We generated 1000 random starting
configurations and reported the number of successes — a run is called a success
when the a priori known global optimum configuration is found. We remark that,
in order to obtain more meaningful comparisons, the same starting points were
used in the experiments, both with the standard and with two-phase methods.
In most of the experiments starting configurations were randomly generated, as
already described, with »=6; in some cases in which the standard algorithm
could not find the correct docking, experiments were performed also with r=3
(see Tables 5 and 7).

We first started our testing on widely different examples and we noticed a great
variation in the behavior of the method on different cases, so we chose to work
on a more significant example. We decided to split the cluster to obtain two parts
that could mimic biomolecular docking. In fact just an ordinary division would
not be a simplified model of two proteins. It is clear that using Lennard-Jones
clusters is always a rough approximation, but we only need to reproduce the
characteristics that we would like to observe in the first phase of minimization
and not the general behavior of the two proteins during docking. Clusters big
enough to obtain a guest of a reasonable dimension were used. We chose to work
in the beginning on a single example in order to tune the parameters and after
to use different examples to validate the choice of parameters. Test examples
were built with the aim of obtaining different kinds of docking; in fact if we
divide a cluster cutting a single square and wedge-shaped part, we obtain a case
which in some sense is too easy, as configurations different from the optimal one
are widely different from the optimal one and possess a much higher potential
energy. In our tests we used different splitting techniques to test whether the
algorithm is capable of finding the unique optimal configuration among many
similar configurations. In short we transformed the problem into a harder one by
allowing the existence of local minima near the global one.

As an example, the optimal 68-atoms cluster was split into two parts with
nearly the same dimension; one of the parts has two bulges (or protrusions)
corresponding to two cavities in the other part. These two cavities are like two
similar but not identical valleys, so that two close matchings are indeed possible,
only one of which is the optimal one. The example was labelled by the number of
atoms in the host and the guest; this test, as an example, is called 37-31. Another
important test is 35-33, which is similar to the first one, but without bulges (the
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Figure 3. Example 35-33.

two atoms that form these are moved to the guest). In this example many close
configurations are possible as the contact surface is quite smooth.

In the first tests (see Table 1), a barrier similar to Lennard-Jones repulsive
contribution was used, so we chose high values for ¢, in the range 10-12; the
values chosen for the root term k was 2. In some cases we observed an increase
in the number of successes of one order of magnitude, but for some choices of «
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Table 1. Example 37-31; r=6

q o Josuccesses
12 0.005 2.8
12 0.01 3.0
12 0.1 2.8
12 1.0 1.2
10 0.001 22
10 0.01 3.1
10 0.1 2.9

7 0.0001 0.0

7 0.0005 1.7

7 0.001 2.4

7 0.003 35

7 0.005 3.1

7 0.01 2.6
— — 0.0

we obtained no success or a smaller number of successes than in the single phase
case.

We performed a large number of tests changing the value of the parameter g.
After these tests we observed that values for ¢ less than 6, gave the best results
even for different choices of « (see Tables 2, 3). It is important to notice that
while varying ¢, it is also necessary to change the value of a: in fact, a small
variation in ¢ can modify in a significant way the weight of the repulsive term
in (10). So, in order to have a balance between the repulsive and the attractive
terms, an adjustment in the value of « is needed.

A large number of systematic tests have been performed on the example 37-31,
with constant values of @, changing the parameter ¢; Table 3 shows the best
results obtained. We can notice a strong improvement obtained with g equal to 1
or 2 and « in 0.3—0.7. With some values of the parameters used on the example
37-31 we performed other tests on different examples, some of which are reported
in Tables 4-7. Even if in a few cases we noticed a strong sensitivity on the choice
of parameters, in general the results obtained seem to be quite insensible to a
large range of parameter choices.

From the tables it is evident that a strong improvement in the number of
successes is obtained by the use of two phase methods against a very small
increase of the computational effort: even if in two phase algorithms two local
optimizations are performed in place of one, it can be observed that the first local
optimization does not need to be carried out with high precision, and thus is
usually less computationally intensive than a regular local search. Moreover, the
second phase, which is performed as a normal local optimization, is started from
a usually good initial configuration and it has been observed that it stops in very
few iterations even if the required precision is high. Precise computational times
are not reported here, but it has been observed that each two-phase local search
required significantly less than two single local searches. In our experiments we
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Table 2. Example 37-31, r=3

q a k Josuccesses
6 0.005 4 5.4
6 0.005 2 5.4

Table 3. Example 37-31; r=6

q a Yosuccesses
6 0.3 1.0
6 0.5 1.3
6 0.7 1.1
6 1.0 1.6
5 0.3 0.9
5 0.5 1.8
5 0.7 1.7
5 1.0 1.4
4 0.3 23
4 0.5 1.7
4 0.7 1.5
4 1.0 1.5
3 0.3 3.1
3 0.5 2.8
3 0.7 2.4
3 1.0 2.6
2 0.3 6.2
2 0.5 6.9
2 0.7 6.0
2 1.0 2.1
1 0.3 6.9
1 0.5 10.2
1 0.7 9.2
1 1.0 0.0

found that the success rate of two-phase local searches is often at least an order
of magnitude higher than that of the standard one: even if a two-phase local
search costed twice as much as a single one, the advantages would have remained
outstanding.

In the following, a selection of tables of numerical results is presented. We
recall that most rows in each table correspond to averages over 1000 random
experiments, while for the most difficult cases 10000 runs were performed. Entries
in the tables with no value for the «, ¢ and k parameters correspond to results
obtained with single phase local optimizations.
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Table 4. Example 51-17

q a k r Yosuccesses
1 1.5 2 6.0 5.6

1 0.5 4 3.0 2.0

1 1.2 4 3.0 45

1 1.8 4 3.0 1.7

1 1.5 4 3.0 45

1 0.5 2 5.0 43

1 0.5 3 6.0 0.6

1 0.3 2 6.0 35

1 0.5 2 3.0 44

1 0.7 2 3.0 2.1

2 0.5 2 3.0 4.6

2 0.3 2 3.0 4.1

- - - 6.0 0.06

- - - 3.0 0.1
Table 5. Example 30-25.

q a k r Josuccesses
1 0.5 2 6.0 9.5

1 0.7 2 6.0 8.9

- - - 3.0 0.13
Table 6. Example 35-33 r=4.5

q o' Yosuccesses

6 0.005 33

6 0.01 2.3

6 0.1 4.7

5 0.005 2.4

Table 7. Example 37-31

q a k r Josuccesses
1 0.5 2 6.0 0.3

2 0.5 3 6.0 6.3

- - 3.0 0.18
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6. Two Phase Methods for Docking Biomolecules

After the successful experiments with Lennard-Jones clusters, some preliminary
results have been obtained for realistic-size problems of docking. When the
molecules to be docked consist of biomolecules, several modifications are needed
to the form of the first-phase modified potential function. In fact, in the expression
of the potential energy, the term corresponding to Van der Waals contributions
is similar to that of Lennard-Jones clusters, as the repulsive and the attractive
components in both cases are proportional to r~'? and r~° respectively; however,
the coefficients are different, and, in particular, they depend on the pair of atoms
considered, accounting for their different radii. So using the same barrier term
for all pairs of atoms does not provide a good solution; a possibility which has
been explored is thus that of replacing the barrier term in the penalty with the
Van der Waals contribution. However this simple modification did not lead to
a great improvement in the performance of the resulting method. This fact can
be explained observing that in docking configurations which are observed in
nature the two molecules form a complex which is extremely compact, with deep
inclusion of a part of one molecule inside the other, like a key inside the lock.
This happens in nature also thanks to the fact that the docking process is not
rigid; it is frequently the case that, starting from a known docking configuration
and separating the molecules, it is impossible to reconstruct the complex through
rigid movements.

We can visualize this situation in a schematic way as in the docking on the left
side of Figure 4. As dealing with flexible docking would lead to an enormous
increase in complexity, we preferred to follow a different strategy which could
enable us to obtain the correct docking with rigid roto-translations. To obtain
this effect, a coefficient B greater than one was added into the expression of the
modified potential to virtually reduce the Van der Waals radii; the effect of this
term is that of reducing the barrier which prevents two atoms to get closer, or,
equivalently, to assume that the radii of the atoms are smaller than real; this way
molecules can get close enough and even they can be placed into position which,

Figure 4. A difficult docking case.
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! .

Figure 5. lauh.pdb.

with the original radii, were unreachable through rigid movements. This new
modified function is represented in (11).

v=3" Z(u B +akrij) (11)

ieguest jehost rlj ( ij/B)6

The examples used in this phase of algorithm test were taken from the Protein
Data Bank (see (Berman et al., 2000)).

In this paper we just comment on results obtained on a theoretical docking
model of the HIV virus with an RNA fragment (corresponding to the PDB file
lauh). Figures 5-7 respectively represent the docked complex, the host (an RNA
fragment) and the guest (a protein).

The docking published in the PDB databank was obtained minimizing the Van
der Waals and electrostatic contributions along particular directions. In the first
tests we chose to constrain the geometric center of the guest molecule to have
the same sign as that of the optimal configuration reported in the PDB file. The
introduction of such a constraint is justified by the fact that the host molecule in
the PDB file is just a fragment of a much larger one: this fact may induce false
positives which consist of docking the guest molecule to sites which are very
close to where the host was truncated.
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Figure 7. The guest molecule.
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Table 8. lauh k=2

B a Josuccesses
- - 0.5

0.7 1.5 1.5

0.4 1.5 1.0

0.4 4.0 1.5

Table 9. lauh k=2

B o Josuccesses
- - 0.5
0.7 4.0 16.5
0.7 1.5 16.5
0.7 0.5 1.0
0.7 0.05 0.5
0.8 L5 17.0

Using single phase optimization we could not find the optimal docking within
10000 local optimizations; so in order to be able to make comparisons with
two phase methods, and considering also the fact that 10000 local optimizations
required roughly 3 days of cpu time on a SUN Ultra 5 workstation, we decided
to increase the probability of finding the optimal docking with the single phase
algorithm by initializing the local searches in both single and two-phase methods
by fixing the rotation parameters to be equal to the optimal ones, and letting only
the translations vary. Of course the local optimization phases are then performed
varying all six roto-translation parameters. This way we could observe 5 successes
out of 1000 attempts with the single phase algorithm. The results are in Table 8§;
we notice the improvement obtained using two phase method; it is important
to notice that the single phase local optimization fails even when starting from
initial configurations which are very near to the optimal one. Other tests were
performed starting with the geometric center in a fixed position and applying
random rotations in the range (—20°,20°) around each axis. Considering Table 9
we notice a variation of the number of successes varying parameters, but it
is important to notice that the two phase method consistently finds the global
optimum with significantly higher probability than the single phase local method.

All the tests were performed on a Sun-Ultra5 workstation. A large part of
the computational effort is devoted to function and gradient evaluations: for the
lauh example 0.2cpu seconds are needed on average for a single function and
gradient evaluation. For every local minimization between one and two hundreds
of function and gradient evaluations are needed and each test required 1000 local
searches, thus roughly 7cpu hours are needed for every choice of parameters.
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Conclusions

In this paper a modified potential function has been proposed for the solution
of biomolecular docking problem. It is important to notice that the original
contribution of the paper is the definition of a suitable modified potential function
which is used in order to find good starting points for local optimization. The
whole procedure outlined in this paper is thus a local optimization method suited
for the molecular docking problem. A first set of numerical experiments in
both artificial examples and real life molecules have been performed and the
results obtained embedding this local search into the most elementary global
optimization method, namely Multistart, are very encouraging. For the artificial
examples obtained from the splitting of Lennard-Jones clusters the improvement
over traditional local searches is one or two orders of magnitude in terms of
the number of local searches performed. When applied to realistic biomolecular
docking problems, the improvement is even more sensible, as with the modified
potential function the optimal configuration could be obtained in a reasonable
number of local searches, while this could never be observed with standard local
searches, even after several days of attempts.

In conclusion it seems that, despite the fact that molecular conformation prob-
lems are indeed extremely hard problems in which a huge number local optima
exists, an appropriate choice of a penalty function to be applied during the first
phase of any local method might be extremely beneficial. A possible explanation
for this behavior is the fact that in many cases molecular conformation problems
display a funnel structure; this means that the energy landscape is composed of
relatively few and large valleys whose shape is however perturbed by an enor-
mous number of small oscillations. This may explain the failure of standard
Multistart methods; however the inclusion of a first phase which smooths out
many uninteresting local optima might prove crucial for reaching the bottom of
each energy valley.

It is also to be remarked that the results presented in this paper where obtained
with extremely cheap hardware like standard personal computers or low-cost
workstations. The encouraging results obtained so far provide a stimulus for
investigating other research directions. In particular it is planned in the near
future to explore the effect of including these two phase procedures into global
optimization algorithms like, e.g., simulated annealing and to implement the
resulting algorithms also on distributed architectures like clusters of personal
computers. Some preliminary results on the use of Monotonic Basin Hopping
coupled with the two-phase local search (Addis and Schoen, 2003) confirm the
superiority of the two-phase approach.
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